<table>
<thead>
<tr>
<th>Title</th>
<th>Development of micro-lens array for indoor optical wireless communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Xu, Cong</td>
</tr>
<tr>
<td>Citation</td>
<td>Xu, C. (2008, March). Development of micro-lens array for indoor optical wireless communication. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.</td>
</tr>
<tr>
<td>Date</td>
<td>2008</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/9051</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2008 The Author(s).</td>
</tr>
</tbody>
</table>
Development of Micro-Lens Array For Indoor Optical Wireless Communication

Introduction:
Modulated white light LEDs can be used for simultaneous illumination and communication. This project is to develop a micro-lens array for receiving white light LED signals in indoor optical wireless communication system.

Design:
Material: PDMS
Element: Singlet
Distribution: Square Array (5 X 5)
Size: <1cm²
Thickness: <500 µm

Application:
Besides indoor wireless communication, micro-lens array application also includes:
- Optical interconnects
- Imaging, micro-displays
- Flat panel displays
- Beam shaping
- More…

Fabrication:

Figure 1. System Overview
Figure 2a. Layout and Spot Diagram of Doublet
Figure 2b. Layout and Spot Diagram of Singlet
[The spot size is comparable to doublet]
Figure 3. Fabrication Process